
Fronts
Release 0.9.4

Gabriel S. Gerlero

Feb 18, 2020

CONTENTS

1 Main module fronts 3
1.1 Solvers . 3
1.2 Solutions . 7
1.3 Boltzmann transformation . 12

2 Submodule fronts.D: included D functions 17
2.1 fronts.D.constant . 17
2.2 fronts.D.power_law . 17
2.3 fronts.D.van_genuchten . 18
2.4 fronts.D.richards . 19

Index 21

i

ii

Fronts, Release 0.9.4

Welcome to the API documentation for Fronts!

Don’t forget to read the README and check out the examples on the project’s GitHub page.

CONTENTS 1

http://github.com/gerlero/fronts

Fronts, Release 0.9.4

2 CONTENTS

CHAPTER

ONE

MAIN MODULE FRONTS

1.1 Solvers

solve(D, Si, Sb[, dS_dob_bracket, radial, . . .]) Solve an instance of the general problem.
solve_from_guess(D, Si, Sb, o_guess, S_guess) Solve an instance of the general problem starting from

a guess of the solution.
inverse(o, S) Solve the inverse problem.

1.1.1 fronts.solve

fronts.solve(D, Si, Sb, dS_dob_bracket=(-1.0, 1.0), radial=False, ob=0.0, Si_tol=1e-06, maxiter=100,
verbose=0)

Solve an instance of the general problem.

Given a positive function D, scalars 𝑆𝑖, 𝑆𝑏 and 𝑜𝑏, and coordinate unit vector r̂, finds a function S of r and t such
that: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜕𝑆

𝜕𝑡
= ∇ ·

[︂
𝐷 (𝑆)

𝜕𝑆

𝜕𝑟
r̂

]︂
𝑟 > 𝑟𝑏(𝑡), 𝑡 > 0

𝑆(𝑟, 0) = 𝑆𝑖 𝑟 > 0

𝑆(𝑟𝑏(𝑡), 𝑡) = 𝑆𝑏 𝑡 > 0

𝑟𝑏(𝑡) = 𝑜𝑏
√
𝑡

Parameters

• D (callable) – Twice-differentiable function that maps the range of S to positive values.
It can be called as D(S) to evaluate it at S. It can also be called as D(S, n) with n equal
to 1 or 2, in which case the first n derivatives of the function evaluated at the same S are
included (in order) as additional return values. While mathematically a scalar function, D
operates in a vectorized fashion with the same semantics when S is a numpy.ndarray.

• Si (float) – 𝑆𝑖, the initial value of S in the domain.

• Sb (float) – 𝑆𝑏, the value of S imposed at the boundary.

• dS_dob_bracket ((float, float), optional) – Search interval that contains
the value of the derivative of S with respect to the Boltzmann variable o (i.e., 𝑑𝑆/𝑑𝑜) at
the boundary in the solution. The interval can be made as wide as desired, at the cost of
additional iterations required to obtain the solution. To refine a solution obtained previously
with this same function, pass in that solution’s final dS_dob_bracket. This parameter is
always checked and a ValueError is raised if a dS_dob_bracket is found not to be valid for
the problem.

3

Fronts, Release 0.9.4

• radial ({False, 'cylindrical', 'spherical'}, optional) – Choice of
coordinate unit vector r̂. Must be one of the following:

– False (default) r̂ is any coordinate unit vector in rectangular (Cartesian) coordinates, or
an axial unit vector in a cylindrical coordinate system

– 'cylindrical' r̂ is the radial unit vector in a cylindrical coordinate system

– 'spherical' r̂ is the radial unit vector in a spherical coordinate system

• ob (float, optional) – 𝑜𝑏, which determines the behavior of the boundary. The de-
fault is zero, which implies that the boundary always exists at 𝑟 = 0. It must be strictly
positive if radial is not False. Be aware that a non-zero value implies a moving boundary.

• Si_tol (float, optional) – Absolute tolerance for 𝑆𝑖.

• maxiter (int, optional) – Maximum number of iterations. A RuntimeError will be
raised if the specified tolerance is not achieved within this number of iterations. Must be >=
2.

• verbose ({0, 1, 2}, optional) – Level of algorithm’s verbosity. Must be one of
the following:

– 0 (default) : work silently.

– 1 : display a termination report.

– 2 : display progress during iterations.

Returns

solution – See SemiInfiniteSolution for a description of the solution object. Additional fields
specific to this solver are included in the object:

• o [numpy.ndarray, shape (n,)] Final solver mesh, in terms of the Boltzmann variable o.

• niter [int] Number of iterations required to find the solution.

• dS_dob_bracket [(float, float)] Subinterval of dS_dob_bracket that contains the value of
𝑑𝑆/𝑑𝑜 at the boundary in the solution. May be used in a subsequent call with a smaller
Si_tol to avoid reduntant iterations if wanting to refine a previously obtained solution.

Return type SemiInfiniteSolution

See also:

solve_from_guess()

Notes

Given the expression of 𝑟𝑏 which specifies the location of the boundary, a fixed boundary can be had only if
𝑜𝑏 = 0. Any other 𝑜𝑏 implies a moving boundary. This restriction affects radial problems in particular.

This function works by transforming the partial differential equation with the Boltzmann transformation
using ode and then solving the resulting ODE repeateadly using the ‘Radau’ method as implemented in
scipy.integrate.solve_ivp. The boundary condition is satisfied exactly as the starting point, and the algorithm
iterates with different values of 𝑑𝑆/𝑑𝑜 at the boundary (chosen from within dS_dob_bracket using bisection)
until it finds the solution that also satisfies the initial condition with the specified tolerance. This scheme assumes
that 𝑑𝑆/𝑑𝑜 at the boundary varies continuously with 𝑆𝑖.

4 Chapter 1. Main module fronts

Fronts, Release 0.9.4

1.1.2 fronts.solve_from_guess

fronts.solve_from_guess(D, Si, Sb, o_guess, S_guess, radial=False, max_nodes=1000, verbose=0)
Solve an instance of the general problem starting from a guess of the solution.

Given a positive function D, scalars 𝑆𝑖, 𝑆𝑏 and 𝑜𝑏, and coordinate unit vector r̂, finds a function S of r and t such
that: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜕𝑆

𝜕𝑡
= ∇ ·

[︂
𝐷 (𝑆)

𝜕𝑆

𝜕𝑟
r̂

]︂
𝑟 > 𝑟𝑏(𝑡), 𝑡 > 0

𝑆(𝑟, 0) = 𝑆𝑖 𝑟 > 0

𝑆(𝑟𝑏(𝑡), 𝑡) = 𝑆𝑏 𝑡 > 0

𝑟𝑏(𝑡) = 𝑜𝑏
√
𝑡

This function requires an initial mesh and guess of the solution. It is significantly less robust than solve, and
will fail to converge in many cases that the latter can easily handle (whether it converges will usually depend
heavily on the problem, the initial mesh and the guess of the solution; it will raise a RuntimeError on failure).
However, when it converges it is usually faster than solve, which may be an advantage for some use cases. You
should nonetheless prefer solve unless you have a particular use case for which you have found this function to
be better.

Possible use cases include refining a solution (note that solve can do that too), optimization runs in which known
solutions make good first approximations of solutions with similar parameters and every second of computing
time counts, and in the implementation of other solving algorithms. In all these cases, solve should probably be
used as a fallback for when this function fails.

Parameters

• D (callable) – Twice-differentiable function that maps the range of S to positive values.
It can be called as D(S) to evaluate it at S. It can also be called as D(S, n) with n equal
to 1 or 2, in which case the first n derivatives of the function evaluated at the same S are
included (in order) as additional return values. While mathematically a scalar function, D
operates in a vectorized fashion with the same semantics when S is a numpy.ndarray.

• Si (float) – 𝑆𝑖, the initial value of S in the domain.

• Sb (float) – 𝑆𝑏, the value of S imposed at the boundary.

• o_guess (numpy.array_like, shape (n_guess,)) – Initial mesh in terms of
the Boltzmann variable o. Must be strictly increasing. o_guess[0] is 𝑜𝑏, which deter-
mines the behavior of the boundary. If zero, it implies that the boundary always exists at
𝑟 = 0. It must be strictly positive if radial is not False. Be aware that a non-zero value
implies a moving boundary. On the other end, o_guess[-1] must be large enough to
contain the solution to the semi-infinite problem.

• S_guess (float or numpy.array_like, shape (n_guess,)) – Initial
guess of S at the points in o_guess. If a single value, the guess is interpreted as uniform.

• radial ({False, 'cylindrical', 'spherical'}, optional) – Choice of
coordinate unit vector r̂. Must be one of the following:

– False (default) r̂ is any coordinate unit vector in rectangular (Cartesian) coordinates, or
an axial unit vector in a cylindrical coordinate system

– 'cylindrical' r̂ is the radial unit vector in a cylindrical coordinate system

– 'spherical' r̂ is the radial unit vector in a spherical coordinate system

• max_nodes (int, optional) – Maximum allowed number of mesh nodes.

1.1. Solvers 5

Fronts, Release 0.9.4

• verbose ({0, 1, 2}, optional) – Level of algorithm’s verbosity. Must be one of
the following:

– 0 (default) : work silently.

– 1 : display a termination report.

– 2 : display progress during iterations.

Returns

solution – See SemiInfiniteSolution for a description of the solution object. Additional fields
specific to this solver are included in the object:

• o [numpy.ndarray, shape (n,)] Final solver mesh, in terms of the Boltzmann variable o.

• niter [int] Number of iterations required to find the solution.

• rms_residuals [numpy.ndarray, shape (n-1,)] RMS values of the relative residuals over
each mesh interval.

Return type SemiInfiniteSolution

See also:

solve()

Notes

Given that the location of the boundary is expressed in terms of the Boltzmann variable, a fixed boundary can be
had only if o_guess[0] is 0. Any other o_guess[0] implies a moving boundary. This restriction affects
radial problems in particular.

This function works by transforming the partial differential equation with the Boltzmann transformation using
ode and then solving the resulting ODE with SciPy’s boundary value problem solver scipy.integrate.solve_bvp
and a two-point Dirichlet condition that matches the boundary and initial conditions of the problem. Upon
that solver’s convergence, it runs a final check on whether the candidate solution also satisfies the semi-infinite
condition (which implies 𝑑𝑆/𝑑𝑜 → 0 as 𝑜 → ∞).

1.1.3 fronts.inverse

fronts.inverse(o, S)
Solve the inverse problem.

Given a function S of r and t, and scalars 𝑆𝑖, 𝑆𝑏 and 𝑜𝑏, finds a positive function D of the values of S such that:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜕𝑆

𝜕𝑡
=

𝜕

𝜕𝑟

(︂
𝐷 (𝑆)

𝜕𝑆

𝜕𝑟

)︂
𝑟 > 𝑟𝑏(𝑡), 𝑡 > 0

𝑆(𝑟, 0) = 𝑆𝑖 𝑟 > 0

𝑆(𝑟𝑏(𝑡), 𝑡) = 𝑆𝑏 𝑡 > 0

𝑟𝑏(𝑡) = 𝑜𝑏
√
𝑡

S is input via its values on a finite set of points expressed in terms of the Boltzmann variable. Problems in radial
coordinates are not supported.

Parameters

• o (numpy.array_like, shape (n,)) – Points where S is known, expressed in terms
of the Boltzmann variable. Must be strictly increasing.

6 Chapter 1. Main module fronts

Fronts, Release 0.9.4

• S (numpy.array_like, shape (n,)) – Values of the solution at o. Must be mono-
tonic (either non-increasing or non-decreasing) and S[-1] must be 𝑆𝑖.

Returns D – Twice-differentiable function that maps the range of S to positive values. It can be
called as D(S) to evaluate it at S. It can also be called as D(S, n) with n equal to 1 or 2, in
which case the first n derivatives of the function evaluated at the same S are included (in order)
as additional return values. While mathematically a scalar function, D operates in a vectorized
fashion with the same semantics when S is a numpy.ndarray.

Return type callable

See also:

o()

Notes

An o function of S is constructed by interpolating the input data with a PCHIP monotonic cubic spline. The
function D is then constructed by applying the expressions that result from solving the Boltzmann-transformed
equation for D.

Depending on the number of points, the returned D may take orders of magnitude more time to be evaluated
than an analytic function. In that case, you may notice that solvers work significantly slower when called with
this D.

1.2 Solutions

SemiInfiniteSolution Continuous solution to a semi-infinite problem.
Solution Base class for solutions using the Boltzmann transfor-

mation.

1.2.1 fronts.SemiInfiniteSolution

class fronts.SemiInfiniteSolution(sol, ob, oi, D)
Continuous solution to a semi-infinite problem.

Its methods describe a continuous solution to a problem of finding a function S of r and t such that:

𝜕𝑆

𝜕𝑡
= ∇ ·

[︂
𝐷 (𝑆)

𝜕𝑆

𝜕𝑟
r̂

]︂
with r bounded at 𝑟𝑏(𝑡) = 𝑜𝑏

√
𝑡 on the left and unbounded to the right. For 𝑟 < 𝑟𝑏(𝑡), the methods will evaluate

to NaNs.

Parameters

• sol (callable) – Solution to the corresponding ODE obtained with ode. For any o in the
closed interval [ob, oi], sol(o)[0] is the value of S at o, and sol(o)[1] is the value of
the derivative 𝑑𝑆/𝑑𝑜 at o. sol will only be evaluated in this interval.

• ob (float) – 𝑜𝑏, which determines the behavior of the boundary.

• oi (float) – Value of the Boltzmann variable at which the solution can be considered to
be equal to the initial condition. Must be ≥ 𝑜𝑏.

• D (callable) – D used to obtain sol. Must be the same function that was passed to ode.

1.2. Solutions 7

Fronts, Release 0.9.4

See also:

solve, solve_from_guess, ode

__init__(sol, ob, oi, D)
Initialize self. See help(type(self)) for accurate signature.

Methods

S([r, t, o]) S, the unknown function.
__init__(sol, ob, oi, D) Initialize self.
dS_do([r, t, o]) 𝑑𝑆/𝑑𝑜, derivative of S with respect to the Boltzmann

variable.
dS_dr(r, t) 𝜕𝑆/𝜕𝑟, spatial derivative of S.
dS_dt(r, t) 𝜕𝑆/𝜕𝑡, time derivative of S.
flux(r, t) Diffusive flux of S.
rb(t) 𝑟𝑏, the location of the boundary.

S(r=None, t=None, o=None)
S, the unknown function.

May be called either with parameters r and t, or with just o.

Parameters

• r (float or numpy.ndarray, optional) – Location(s). If a numpy.ndarray, it
must have a shape broadcastable with t. If this parameter is used, you must also pass t and
cannot pass o.

• t (float or numpy.ndarray, optional) – Time(s). If a numpy.ndarray, it
must have a shape broadcastable ith r. Values must be positive. If this parameter is used,
you must also pass r and cannot pass o.

• o (float or numpy.ndarray, optional) – Value(s) of the Boltzmann variable.
If this parameter is used, you cannot pass r or t.

Returns S – If o is passed, the return is of the same type and shape as o. Otherwise, return is a
float if both r and t are floats, or a numpy.ndarray of the shape that results from broadcasting
r and t.

Return type float or numpy.ndarray

dS_do(r=None, t=None, o=None)
𝑑𝑆/𝑑𝑜, derivative of S with respect to the Boltzmann variable.

May be called either with parameters r and t, or with just o.

Parameters

• r (float or numpy.ndarray, optional) – Location(s). If a numpy.ndarray, it
must have a shape broadcastable with t. If this parameter is used, you must also pass t and
cannot pass o.

• t (float or numpy.ndarray, optional) – Time(s). If a numpy.ndarray, it
must have a shape broadcastable with r. Values must be positive. If this parameter is
used, you must also pass r and cannot pass o.

• o (float or numpy.ndarray, optional) – Value(s) of the Boltzmann variable.
If this parameter is used, you cannot pass r or t.

8 Chapter 1. Main module fronts

Fronts, Release 0.9.4

Returns dS_do – If o is passed, the return is of the same type and shape as o. Otherwise, the
return is a float if both r and t are floats, or a numpy.ndarray of the shape that results from
broadcasting r and t.

Return type float or numpy.ndarray

dS_dr(r, t)
𝜕𝑆/𝜕𝑟, spatial derivative of S.

Parameters

• r (float or numpy.ndarray) – Location(s) along the coordinate. If a
numpy.ndarray, it must have a shape broadcastable with t.

• t (float or numpy.ndarray) – Time(s). If a numpy.ndarray, it must have a shape
broadcastable with r. Values must be positive.

Returns dS_dr – The return is a float if both r and t are floats. Otherwise it is a numpy.ndarray
of the shape that results from broadcasting r and t.

Return type float or numpy.ndarray

dS_dt(r, t)
𝜕𝑆/𝜕𝑡, time derivative of S.

Parameters

• r (float or numpy.ndarray) – Location(s). If a numpy.ndarray, it must have a
shape broadcastable with t.

• t (float or numpy.ndarray) – Time(s). If a numpy.ndarray, it must have a shape
broadcastable with r. Values must be positive.

Returns dS_dt – The return is a float if both r and t are floats. Otherwise it is a numpy.ndarray
of the shape that results from broadcasting r and t.

Return type float or numpy.ndarray

flux(r, t)
Diffusive flux of S.

Returns the diffusive flux of S in the direction r̂, equal to −𝐷(𝑆)𝜕𝑆/𝜕𝑟.

Parameters

• r (float or numpy.ndarray) – Location(s). If a numpy.ndarray, it must have a
shape broadcastable with t.

• t (float or numpy.ndarray) – Time(s). If a numpy.ndarray, it must have a shape
broadcastable with r. Values must be positive.

Returns flux – The return is a float if both r and t are floats. Otherwise it is a numpy.ndarray of
the shape that results from broadcasting r and t.

Return type float or numpy.ndarray

rb(t)
𝑟𝑏, the location of the boundary.

This is the point where the boundary condition of the problem is imposed.

Parameters t (float or numpy.ndarray) – Time(s). Values must be positive.

Returns rb – The return is of the same type and shape as t.

Return type float or numpy.ndarray

1.2. Solutions 9

Fronts, Release 0.9.4

Notes

Depending on 𝑜𝑏, the boundary may be fixed at 𝑟 = 0 or it may move with time.

1.2.2 fronts.Solution

class fronts.Solution(sol, D)
Base class for solutions using the Boltzmann transformation.

Its methods describe a continuous solution to any problem of finding a function S of r and t such that:

𝜕𝑆

𝜕𝑡
= ∇ ·

[︂
𝐷 (𝑆)

𝜕𝑆

𝜕𝑟
r̂

]︂
Parameters

• sol (callable) – Solution to an ODE obtained with ode. For any float or numpy.ndarray
o, sol(o)[0] are the values of S at o, and sol(o)[1] the values of the derivative dS/do
at o.

• D (callable) – D used to obtain sol. Must be the same function that was passed to ode.

See also:

ode

__init__(sol, D)
Initialize self. See help(type(self)) for accurate signature.

Methods

S([r, t, o]) S, the unknown function.
__init__(sol, D) Initialize self.
dS_do([r, t, o]) 𝑑𝑆/𝑑𝑜, derivative of S with respect to the Boltzmann

variable.
dS_dr(r, t) 𝜕𝑆/𝜕𝑟, spatial derivative of S.
dS_dt(r, t) 𝜕𝑆/𝜕𝑡, time derivative of S.
flux(r, t) Diffusive flux of S.

S(r=None, t=None, o=None)
S, the unknown function.

May be called either with parameters r and t, or with just o.

Parameters

• r (float or numpy.ndarray, optional) – Location(s). If a numpy.ndarray, it
must have a shape broadcastable with t. If this parameter is used, you must also pass t and
cannot pass o.

• t (float or numpy.ndarray, optional) – Time(s). If a numpy.ndarray, it
must have a shape broadcastable ith r. Values must be positive. If this parameter is used,
you must also pass r and cannot pass o.

• o (float or numpy.ndarray, optional) – Value(s) of the Boltzmann variable.
If this parameter is used, you cannot pass r or t.

10 Chapter 1. Main module fronts

Fronts, Release 0.9.4

Returns S – If o is passed, the return is of the same type and shape as o. Otherwise, return is a
float if both r and t are floats, or a numpy.ndarray of the shape that results from broadcasting
r and t.

Return type float or numpy.ndarray

dS_do(r=None, t=None, o=None)
𝑑𝑆/𝑑𝑜, derivative of S with respect to the Boltzmann variable.

May be called either with parameters r and t, or with just o.

Parameters

• r (float or numpy.ndarray, optional) – Location(s). If a numpy.ndarray, it
must have a shape broadcastable with t. If this parameter is used, you must also pass t and
cannot pass o.

• t (float or numpy.ndarray, optional) – Time(s). If a numpy.ndarray, it
must have a shape broadcastable with r. Values must be positive. If this parameter is
used, you must also pass r and cannot pass o.

• o (float or numpy.ndarray, optional) – Value(s) of the Boltzmann variable.
If this parameter is used, you cannot pass r or t.

Returns dS_do – If o is passed, the return is of the same type and shape as o. Otherwise, the
return is a float if both r and t are floats, or a numpy.ndarray of the shape that results from
broadcasting r and t.

Return type float or numpy.ndarray

dS_dr(r, t)
𝜕𝑆/𝜕𝑟, spatial derivative of S.

Parameters

• r (float or numpy.ndarray) – Location(s) along the coordinate. If a
numpy.ndarray, it must have a shape broadcastable with t.

• t (float or numpy.ndarray) – Time(s). If a numpy.ndarray, it must have a shape
broadcastable with r. Values must be positive.

Returns dS_dr – The return is a float if both r and t are floats. Otherwise it is a numpy.ndarray
of the shape that results from broadcasting r and t.

Return type float or numpy.ndarray

dS_dt(r, t)
𝜕𝑆/𝜕𝑡, time derivative of S.

Parameters

• r (float or numpy.ndarray) – Location(s). If a numpy.ndarray, it must have a
shape broadcastable with t.

• t (float or numpy.ndarray) – Time(s). If a numpy.ndarray, it must have a shape
broadcastable with r. Values must be positive.

Returns dS_dt – The return is a float if both r and t are floats. Otherwise it is a numpy.ndarray
of the shape that results from broadcasting r and t.

Return type float or numpy.ndarray

flux(r, t)
Diffusive flux of S.

1.2. Solutions 11

Fronts, Release 0.9.4

Returns the diffusive flux of S in the direction r̂, equal to −𝐷(𝑆)𝜕𝑆/𝜕𝑟.

Parameters

• r (float or numpy.ndarray) – Location(s). If a numpy.ndarray, it must have a
shape broadcastable with t.

• t (float or numpy.ndarray) – Time(s). If a numpy.ndarray, it must have a shape
broadcastable with r. Values must be positive.

Returns flux – The return is a float if both r and t are floats. Otherwise it is a numpy.ndarray of
the shape that results from broadcasting r and t.

Return type float or numpy.ndarray

1.3 Boltzmann transformation

ode(D[, radial]) Transform the PDE into an ODE.
o(r, t) Transform to the Boltzmann variable.
do_dr(r, t) Spatial derivative of the Boltzmann transformation.
do_dt(r, t) Time derivative of the Boltzmann transformation.
r(o, t) Transform back from the Boltzmann variable into r.
t(o, r) Transform back from the Boltzmann variable into t.
as_o([r, t, o]) Transform to the Boltzmann variable if called with r and

t.

1.3.1 fronts.ode

fronts.ode(D, radial=False)
Transform the PDE into an ODE.

Given a positive function D and coordinate unit vector r̂, transform the partial differential equation (PDE) in
which S is the unknown function of r and t:

𝜕𝑆

𝜕𝑡
= ∇ ·

[︂
𝐷 (𝑆)

𝜕𝑆

𝜕𝑟
r̂

]︂
into an ordinary differential equation (ODE) where S is an unknown function of the Boltzmann variable o.

This function returns the fun and jac callables that may be used to solve the ODE with the solvers included
with SciPy (scipy.integrate module). The second-order ODE is expressed as a system of first-order ODEs with
independent variable o where y[0] in fun and jac correspond to the value of the function S itself and y[1] to
its first derivative 𝑑𝑆/𝑑𝑜.

fun and jac support both non-vectorized usage (where their first argument is a float) as well as vectorized usage
(when numpy.ndarray objects are passed as both arguments).

Parameters

• D (callable) – Twice-differentiable function that maps the range of S to positive values.
It can be called as D(S) to evaluate it at S. It can also be called as D(S, n) with n equal
to 1 or 2, in which case the first n derivatives of the function evaluated at the same S are
included (in order) as additional return values. While mathematically a scalar function, D
operates in a vectorized fashion with the same semantics when S is a numpy.ndarray.

• radial ({False, 'cylindrical', 'spherical'}, optional) – Choice of
coordinate unit vector r̂. Must be one of the following:

12 Chapter 1. Main module fronts

Fronts, Release 0.9.4

– False (default) r̂ is any coordinate unit vector in rectangular (Cartesian) coordinates, or
an axial unit vector in a cylindrical coordinate system

– 'cylindrical' r̂ is the radial unit vector in a cylindrical coordinate system

– 'spherical' r̂ is the radial unit vector in a spherical coordinate system

Returns

• fun (callable) – Function that returns the right-hand side of the system. The calling signature
is fun(o, y).

• jac (callable) – Function that returns the Jacobian matrix of the right-hand side of the sys-
tem. The calling signature is jac(o, y).

See also:

Solution(), o()

Notes

If radial is not False, the PDE is undefined at 𝑟 = 0, and therefore the returned ODE is also undefined for 𝑜 = 0.

1.3.2 fronts.o

fronts.o(r, t)
Transform to the Boltzmann variable.

Returns the Boltzmann variable at the given r and t, which is the result of applying the Boltzmann transforma-
tion:

𝑜(𝑟, 𝑡) = 𝑟/
√
𝑡

Parameters

• r (float or numpy.ndarray) – Location(s). If a numpy.ndarray, it must have a
shape broadcastable with t.

• t (float or numpy.ndarray) – Time(s). If a numpy.ndarray, it must have a shape
broadcastable with r. Values must be positive.

Returns o – The return is a float if both r and t are floats. Otherwise it is a numpy.ndarray of the
shape that results from broadcasting r and t.

Return type float or numpy.ndarray

See also:

do_dr(), do_dt(), r(), t(), as_o()

1.3.3 fronts.do_dr

fronts.do_dr(r, t)
Spatial derivative of the Boltzmann transformation.

Returns the partial derivative 𝜕𝑜/𝜕𝑟 evaluated at (r, t).

Parameters

1.3. Boltzmann transformation 13

Fronts, Release 0.9.4

• r (float or numpy.ndarray) – Location(s). If a numpy.ndarray, it must have a
shape broadcastable with t.

• t (float or numpy.ndarray) – Time(s). If a numpy.ndarray, it must have a shape
broadcastable with r. Values must be positive.

Returns do_dr – The return is a float if both r and t are floats. Otherwise it is a numpy.ndarray of
the shape that results from broadcasting r and t.

Return type float or numpy.ndarray

See also:

o(), do_dt()

1.3.4 fronts.do_dt

fronts.do_dt(r, t)
Time derivative of the Boltzmann transformation.

Returns the partial derivative 𝜕𝑜/𝜕𝑡 evaluated at (r, t).

Parameters

• r (float or numpy.ndarray) – Location(s). If a numpy.ndarray, it must have a
shape broadcastable with t.

• t (float or numpy.ndarray) – Time(s). If a numpy.ndarray, it must have a shape
broadcastable with r. Values must be positive.

Returns do_dt – The return is a float if both r and t are floats. Otherwise it is a numpy.ndarray of
the shape that results from broadcasting r and t.

Return type float or numpy.ndarray

See also:

o(), do_dr()

1.3.5 fronts.r

fronts.r(o, t)
Transform back from the Boltzmann variable into r.

Parameters

• o (float or numpy.ndarray) – Value(s) of the Boltzmann variable. If a
numpy.ndarray, it must have a shape broadcastable with t.

• t (float or numpy.ndarray) – Time(s). If a numpy.ndarray, it must have a shape
broadcastable with o. Values must be positive.

Returns r – The return is a float if both o and t are floats. Otherwise it is a numpy.ndarray of the
shape that results from broadcasting o and t.

Return type float or numpy.ndarray

See also:

o(), t()

14 Chapter 1. Main module fronts

Fronts, Release 0.9.4

1.3.6 fronts.t

fronts.t(o, r)
Transform back from the Boltzmann variable into t.

Parameters

• o (float or numpy.ndarray) – Value(s) of the Boltzmann variable. If a
numpy.ndarray, it must have a shape broadcastable with r.

• r (float or numpy.ndarray) – Location(s). If a numpy.ndarray, it must have a
shape broadcastable with o.

Returns t – The return is a float if both o and r are floats. Otherwise it is a numpy.ndarray of the
shape that results from broadcasting o and r.

Return type float or numpy.ndarray

See also:

o(), r()

1.3.7 fronts.as_o

fronts.as_o(r=None, t=None, o=None)
Transform to the Boltzmann variable if called with r and t. Passes the values through if called with o only. On
other combinations of arguments, it raises a TypeError with a message explaining valid usage.

This function is a helper to define other functions that may be called either with r and t, or with just o.

Parameters

• r (float or numpy.ndarray, optional) – Location(s). If a numpy.ndarray, it
must have a shape broadcastable with t. If this parameter is used, you must also pass t and
cannot pass o.

• t (float or numpy.ndarray, optional) – Time(s). If a numpy.ndarray, it must
have a shape broadcastable with r. Values must be positive. If this parameter is used, you
must also pass r and cannot pass o.

• o (float or numpy.ndarray, optional) – Value(s) of the Boltzmann variable.
If this parameter is used, you cannot pass r or t.

Returns o – Passes o through if it is given. Otherwise, it returns o(r,t).

Return type float or numpy.ndarray

See also:

o()

1.3. Boltzmann transformation 15

Fronts, Release 0.9.4

16 Chapter 1. Main module fronts

CHAPTER

TWO

SUBMODULE FRONTS.D: INCLUDED D FUNCTIONS

D.constant([D]) Return a constant D function.
D.power_law(k[, a, epsilon]) Return a power-law D function.
D.van_genuchten([n, m, l, alpha, Ks, S_range]) Return a Van Genuchten moisture diffusivity function.
D.richards(K, C) Return a moisture diffusivity function for a Richards

equation problem.

2.1 fronts.D.constant

fronts.D.constant(D=1.0)
Return a constant D function.

Given a positive constant D, returns the function D:

𝐷(𝑆) = 𝐷

Parameters D (float) – A positive constant.

Returns D – Function that maps any value of S to the given constant. It can be called as D(S) to
obtain the value. It can also be called as D(S, n) with n equal to 1 or 2, in which case the
first n derivatives of the function, which are always zero, are included (in order) as additional
return values. While mathematically a scalar function, D operates in a vectorized fashion with
the same semantics when S is a numpy.ndarray.

Return type callable

Notes

This function is not particularly useful: a constant D will turn a diffusion problem into a linear one, which has an
exact solution and no numerical solvers are necessary. However, it is provided here given that it is the simplest
supported function.

2.2 fronts.D.power_law

fronts.D.power_law(k, a=1, epsilon=0)
Return a power-law D function.

Given the scalars a, k and 𝜀, returns a function D defined as:

𝐷(𝑆) = 𝑎𝑆𝑘 + 𝜀

17

Fronts, Release 0.9.4

Parameters

• k (float) – Exponent

• a (float) – Constant factor

• epsilon (float) – 𝜀, the deviation term

Returns D – Twice-differentiable function that maps S to values according to the expression. It can
be called as D(S) to evaluate it at S. It can also be called as D(S, n) with n equal to 1 or 2, in
which case the first n derivatives of the function evaluated at the same S are included (in order)
as additional return values. While mathematically a scalar function, D operates in a vectorized
fashion with the same semantics when S is a numpy.ndarray.

Return type callable

Notes

Keep in mind that, depending on the parameters, the returned D does not necessarily map every value of S to a
positive value.

2.3 fronts.D.van_genuchten

fronts.D.van_genuchten(n=None, m=None, l=0.5, alpha=1.0, Ks=1.0, S_range=(0.0, 1.0))
Return a Van Genuchten moisture diffusivity function.

Given the parameters 𝐾𝑠, 𝛼, m, l, 𝑆𝑟 and 𝑆𝑠, the Van Genuchten moisture diffusivity function D is defined as:

𝐷(𝑆) =
(1−𝑚)𝐾𝑠

𝛼𝑚(𝑆𝑠 − 𝑆𝑟)
𝑆
(𝑙− 1

𝑚)
𝑒

(︁
(1− 𝑆

1
𝑚
𝑒)−𝑚 + (1− 𝑆

1
𝑚
𝑒)𝑚 − 2

)︁
where:

𝑆𝑒 =
𝑆 − 𝑆𝑟

𝑆𝑠 − 𝑆𝑟

and S is the saturation (or moisture content).

In common usage, the m parameter is replaced with an n parameter so that 𝑚 = 1− 1
𝑛 . This function supports

either parameter.

Parameters

• n (float, optional) – n parameter in the Van Genuchten model. Must be >1. You
must pass either n or m (but not both).

• m (float, optional) – m parameter in the Van Genucthen model. Must be strictly
between 0 and 1. You must pass either n or m (but not both).

• l (float, optional) – Pore connectivity parameter. The default is 0.5. Must be strictly
between 0 and 1.

• alpha (float, optional) – 𝛼 parameter of the Van Genucthen model. The default is
1. Must be positive.

• Ks (float, optional) – 𝐾𝑠, the hydraulic conductivity when saturated. The default is
1. Must be positive.

• S_range ((float, float), optional) – the tuple (𝑆𝑟, 𝑆𝑠), where 𝑆𝑟 is the mini-
mum (or residual) saturation and 𝑆𝑠 the maximum saturation. The default is (0, 1). 𝑆𝑠 must
be greater than 𝑆𝑟.

18 Chapter 2. Submodule fronts.D: included D functions

Fronts, Release 0.9.4

Returns D – Twice-differentiable function that maps values of S in the open interval (𝑆𝑟, 𝑆𝑠) to
positive values. It can be called as D(S) to evaluate it at S. It can also be called as D(S, n)
with n equal to 1 or 2, in which case the first n derivatives of the function evaluated at the same
S are included (in order) as additional return values. While mathematically a scalar function, D
operates in a vectorized fashion with the same semantics when S is a numpy.ndarray.

Return type callable

Notes

The expression used is the one found in Van Genuchten’s original paper [1], but with the addition of the optional
l parameter.

References

[1] VAN GENUCHTEN, M. Th. A closed-form equation for predicting the hydraulic conductivity of unsaturated
soils. Soil science society of America journal, 1980, vol. 44, no 5, p. 892-898.

2.4 fronts.D.richards

fronts.D.richards(K, C)
Return a moisture diffusivity function for a Richards equation problem.

Given the functions K and C, returns the function:

𝐷(𝑆) =
𝐾(𝑆)

𝐶(𝑆)

This function helps the conversion of horizontal Richards equation problems (for which those two functions are
parameters) into moisture diffusivity problems that can be solved using this library.

Parameters

• K (callable) – Hydraulic conductivity function, defined in terms of saturation. A twice-
differentiable function that maps values of S to positive values. It can be called as K(S) to
evaluate it at S. It can also be called as K(S, n) with n equal to 1 or 2, in which case the
first n derivatives of the function evaluated at the same S are included (in order) as additional
return values. While mathematically a scalar function, K operates in a vectorized fashion
with the same semantics when S is a numpy.ndarray.

• C (callable) – Capillary capacity function, defined in terms of saturation. A twice-
differentiable function that maps values of S to positive values. It can be called as C(S) to
evaluate it at S. It can also be called as C(S, n) with n equal to 1 or 2, in which case the
first n derivatives of the function evaluated at the same S are included (in order) as additional
return values. While mathematically a scalar function, C operates in a vectorized fashion
with the same semantics when S is a numpy.ndarray.

Returns D – Twice-differentiable function that maps values of S in the domains of both K and C to
positive values. It can be called as D(S) to evaluate it at S. It can also be called as D(S, n)
with n equal to 1 or 2, in which case the first n derivatives of the function evaluated at the same
S are included (in order) as additional return values. While mathematically a scalar function, D
operates in a vectorized fashion with the same semantics when S is a numpy.ndarray.

Return type callable

• genindex

2.4. fronts.D.richards 19

Fronts, Release 0.9.4

• search

20 Chapter 2. Submodule fronts.D: included D functions

INDEX

Symbols
__init__() (fronts.SemiInfiniteSolution method), 8
__init__() (fronts.Solution method), 10

A
as_o() (in module fronts), 15

C
constant() (in module fronts.D), 17

D
do_dr() (in module fronts), 13
do_dt() (in module fronts), 14
dS_do() (fronts.SemiInfiniteSolution method), 8
dS_do() (fronts.Solution method), 11
dS_dr() (fronts.SemiInfiniteSolution method), 9
dS_dr() (fronts.Solution method), 11
dS_dt() (fronts.SemiInfiniteSolution method), 9
dS_dt() (fronts.Solution method), 11

F
flux() (fronts.SemiInfiniteSolution method), 9
flux() (fronts.Solution method), 11

I
inverse() (in module fronts), 6

O
o() (in module fronts), 13
ode() (in module fronts), 12

P
power_law() (in module fronts.D), 17

R
r() (in module fronts), 14
rb() (fronts.SemiInfiniteSolution method), 9
richards() (in module fronts.D), 19

S
S() (fronts.SemiInfiniteSolution method), 8

S() (fronts.Solution method), 10
SemiInfiniteSolution (class in fronts), 7
Solution (class in fronts), 10
solve() (in module fronts), 3
solve_from_guess() (in module fronts), 5

T
t() (in module fronts), 15

V
van_genuchten() (in module fronts.D), 18

21

	Main module fronts
	Solvers
	Solutions
	Boltzmann transformation

	Submodule fronts.D: included D functions
	fronts.D.constant
	fronts.D.power_law
	fronts.D.van_genuchten
	fronts.D.richards

	Index

