
Fronts
Release 0.9.9

Gabriel S. Gerlero

Oct 21, 2020

CONTENTS

1 Main package fronts 3
1.1 Solvers . 3
1.2 Solutions . 10
1.3 Boltzmann transformation . 15

2 Module fronts.D: Diffusivity functions 21
2.1 fronts.D.constant . 21
2.2 fronts.D.power_law . 22
2.3 fronts.D.brooks_and_corey . 22
2.4 fronts.D.van_genuchten . 24
2.5 fronts.D.from_expr . 25
2.6 fronts.D.richards . 26

Index 29

i

ii

Fronts, Release 0.9.9

Welcome to the reference documentation for Fronts. This documentation covers the usage of all available functions
and classes.

For an introduction to the software, please refer to the README file, which is displayed on the project’s GitHub and
PyPI pages.

Users may also want to look at the example cases, available on the GitHub page under the examples directory.

CONTENTS 1

http://github.com/gerlero/fronts
http://github.com/gerlero/fronts
https://pypi.org/project/fronts
https://github.com/gerlero/fronts/tree/master/examples

Fronts, Release 0.9.9

2 CONTENTS

CHAPTER

ONE

MAIN PACKAGE FRONTS

1.1 Solvers

solve(D, i, b[, radial, ob, itol, . . .]) Solve a problem with a Dirichlet boundary condition.
solve_flowrate(D, i, Qb, radial[, ob, . . .]) Solve a radial problem with a fixed-flowrate boundary

condition.
solve_from_guess(D, i, b, o_guess, guess[, . . .]) Alternative solver for problems with a Dirichlet bound-

ary condition.
inverse(o, samples) Extract D from samples of a solution.

1.1.1 fronts.solve

fronts.solve(D, i, b, radial=False, ob=0.0, itol=0.001, d_dob_hint=None, d_dob_bracket=None,
method='implicit', maxiter=100, verbose=0)

Solve a problem with a Dirichlet boundary condition.

Given a positive function D, scalars 𝜃𝑖, 𝜃𝑏 and 𝑜𝑏, and coordinate unit vector r̂, finds a function 𝜃 of r and t such
that: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜕𝜃

𝜕𝑡
= ∇ ·

[︂
𝐷(𝜃)

𝜕𝜃

𝜕𝑟
r̂

]︂
𝑟 > 𝑟𝑏(𝑡), 𝑡 > 0

𝜃(𝑟, 0) = 𝜃𝑖 𝑟 > 0

𝜃(𝑟𝑏(𝑡), 𝑡) = 𝜃𝑏 𝑡 > 0

𝑟𝑏(𝑡) = 𝑜𝑏
√
𝑡

Parameters

• D (callable or sympy.Expression or str or float) – Callable that evaluates 𝐷 and its derivatives,
obtained from the fronts.D module or defined in the same manner—i.e.:

– D(theta) evaluates and returns 𝐷 at theta

– D(theta, 1) returns both the value of 𝐷 and its first derivative at theta

– D(theta, 2) returns the value of 𝐷, its first derivative, and its second derivative at
theta

When called by this function, theta is always a single float. However, calls as D(theta)
should also accept a NumPy array argument.

Alternatively, instead of a callable, the argument can be the expression of 𝐷 in the form
of a string or sympy.Expression with a single variable. In this case, the solver will
differentiate and evaluate the expression as necessary.

3

Fronts, Release 0.9.9

• i (float) – Initial condition, 𝜃𝑖.

• b (float) – Imposed boundary value, 𝜃𝑏.

• radial ({False, 'cylindrical', 'polar', 'spherical'},
optional) – Choice of coordinate unit vector r̂. Must be one of the following:

– False (default): r̂ is any coordinate unit vector in rectangular (Cartesian) coordinates, or
an axial unit vector in a cylindrical coordinate system

– 'cylindrical' or 'polar': r̂ is the radial unit vector in a cylindrical or polar
coordinate system

– 'spherical': r̂ is the radial unit vector in a spherical coordinate system

• ob (float, optional) – Parameter 𝑜𝑏, which determines the behavior of the boundary.
The default is zero, which means that the boundary always exists at 𝑟 = 0. It must be strictly
positive if radial is not False. A non-zero value implies a moving boundary.

Returns

solution – See Solution for a description of the solution object. Additional fields specific to
this solver are included in the object:

• o (numpy.ndarray, shape (n,)) – Final solver mesh, in terms of the Boltzmann variable.

• niter (int) – Number of iterations required to find the solution.

• d_dob_bracket (sequence of two floats or None) – If available, an interval that contains
the value of 𝑑𝜃/𝑑𝑜|𝑏. May be used as the input d_dob_bracket in a subsequent call with a
smaller itol for the same problem in order to avoid reduntant iterations. Whether this interval
is available or not depends on the strategy used internally by the solver; in particular, this
field is never None if a d_dob_bracket is passed when calling the function.

Return type Solution

Other Parameters

• itol (float, optional) – Absolute tolerance for the initial condition.

• d_dob_hint (None or float, optional) – Optional hint to the solver. If given, it should be a
number close to the expected value of the derivative of 𝜃 with respect to the Boltzmann vari-
able at the boundary (i.e., 𝑑𝜃/𝑑𝑜|𝑏) in the solution to be found. This parameter is typically
not needed.

• d_dob_bracket (None or sequence of two floats, optional) – Optional search interval that
brackets the value of 𝑑𝜃/𝑑𝑜|𝑏 in the solution. If given, the solver will use bisection to find
a solution in which 𝑑𝜃/𝑑𝑜|𝑏 falls inside that interval (a ValueError will be raised for an
incorrect interval). This parameter cannot be passed together with a d_dob_hint. It is also
not needed in typical usage.

• method ({‘implicit’, ‘explicit’}, optional) –

Selects the integration method used by the solver:

– 'implicit' (default): uses a Radau IIA implicit method of order 5. A sensible default
choice that will work for any problem

– 'explicit': uses the DOP853 explicit method of order 8. As an explicit method,
it trades off general solver robustness and accuracy for faster results in “well-behaved”
cases. With this method, the second derivative of 𝐷 is not needed. Requires SciPy 1.4.0
or later (Python 3 only)

4 Chapter 1. Main package fronts

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Fronts, Release 0.9.9

• maxiter (int, optional) – Maximum number of iterations. A RuntimeError will be raised if
the specified tolerance is not achieved within this number of iterations. Must be nonnegative.

• verbose ({0, 1, 2}, optional) –

Level of algorithm’s verbosity. Must be one of the following:

– 0 (default): work silently

– 1: display a termination report

– 2: also display progress during iterations

See also:

solve_from_guess(), solve_flowrate()

Notes

This function works by transforming the partial differential equation with the Boltzmann transformation using
ode() and then solving the resulting ODE repeatedly with the chosen integration method as implemented in
the scipy.integrate module and a custom shooting algorithm. The boundary condition is satisfied exactly
as the starting point, and the algorithm iterates with different values of 𝑑𝜃/𝑑𝑜|𝑏 until it finds the solution that also
verifies the initial condition within the specified tolerance. Trial values of 𝑑𝜃/𝑑𝑜|𝑏 are selected automatically by
default (using heuristics, which can also take into account an optional hint if passed by the user), or by bisecting
an optional search interval. This scheme assumes that 𝑑𝜃/𝑑𝑜|𝑏 varies continuously with 𝜃𝑖.

1.1.2 fronts.solve_flowrate

fronts.solve_flowrate(D, i, Qb, radial, ob=1e-06, angle=6.283185307179586, height=None,
itol=0.001, b_hint=None, b_bracket=None, method='implicit', maxiter=100,
verbose=0)

Solve a radial problem with a fixed-flowrate boundary condition.

Given a positive function D, scalars 𝜃𝑖, 𝜃𝑏 and 𝑜𝑏, and coordinate unit vector r̂, finds a function 𝜃 of r and t such
that: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜕𝜃

𝜕𝑡
= ∇ ·

[︂
𝐷(𝜃)

𝜕𝜃

𝜕𝑟
r̂

]︂
𝑟 > 𝑟𝑏(𝑡), 𝑡 > 0

𝜃(𝑟, 0) = 𝜃𝑖 𝑟 > 0

𝑄(𝑟𝑏(𝑡), 𝑡) = 𝑄𝑏 𝑡 > 0

𝑟𝑏(𝑡) = 𝑜𝑏
√
𝑡

Parameters

• D (callable or sympy.Expression or str or float) – Callable that evaluates 𝐷 and its derivatives,
obtained from the fronts.D module or defined in the same manner—i.e.:

– D(theta) evaluates and returns 𝐷 at theta

– D(theta, 1) returns both the value of 𝐷 and its first derivative at theta

– D(theta, 2) returns the value of 𝐷, its first derivative, and its second derivative at
theta

where theta is always a float in the latter two cases, but it may be either a single float or a
NumPy array when D is called as D(theta).

1.1. Solvers 5

https://docs.scipy.org/doc/scipy/reference/integrate.html#module-scipy.integrate

Fronts, Release 0.9.9

Alternatively, instead of a callable, the argument can be the expression of 𝐷 in the form
of a string or sympy.Expression with a single variable. In this case, the solver will
differentiate and evaluate the expression as necessary.

• i (float) – Initial condition, 𝜃𝑖.

• Qb (float) – Imposed flow rate of 𝜃 at the boundary, 𝑄𝑏.

The flow rate is considered in the direction of r̂: a positive value means that 𝜃 is flowing
into the domain; negative values mean that 𝜃 flows out of the domain.

• radial ({'cylindrical', 'polar'}) – Choice of coordinate unit vector r̂. Must
be one of the following:

– 'cylindrical' : r̂ is the radial unit vector in a cylindrical coordinate system

– 'polar' : r̂ is the radial unit vector in a polar coordinate system

• ob (float, optional) – Parameter 𝑜𝑏, which determines the behavior of the boundary.
It must be positive. The boundary acts as a line source or sink in the limit where ob tends to
zero.

• angle (float, optional) – Total angle covered by the domain. The default is 2𝜋,
which means that 𝜃 may flow through the boundary in all directions. Must be positive and
no greater than 2𝜋.

• height (None or float, optional) – Axial height of the domain if
radial=='cylindrical'. Not allowed if radial=='polar'.

Returns

solution – See Solution for a description of the solution object. Additional fields specific to
this solver are included in the object:

• o (numpy.ndarray, shape (n,)) – Final solver mesh, in terms of the Boltzmann variable.

• niter (int) – Number of iterations required to find the solution.

• b_bracket (sequence of two floats or None) – If available, an interval that contains the value
of 𝜃𝑏. May be used as the input b_bracket in a subsequent call with a smaller itol for the
same problem in order to avoid reduntant iterations. Whether this interval is available or not
depends on the strategy used internally by the solver; in particular, this field is never None
if a b_bracket is passed when calling the function.

Return type Solution

Other Parameters

• itol (float, optional) – Absolute tolerance for the initial condition.

• b_hint (None or float, optional) – Optional hint to the solver. If given, it should be a number
close to the expected value of 𝜃 at the boundary (i.e. 𝜃𝑏) in the solution to be found.

• b_bracket (None or sequence of two floats, optional) – Optional search interval that brack-
ets the value of 𝜃𝑏 in the solution. If given, the solver will use bisection to find a solution
in which 𝜃𝑏 falls inside that interval (a ValueError will be raised for an incorrect interval).
This parameter cannot be passed together with a b_hint.

• method ({‘implicit’, ‘explicit’}, optional) –

Selects the integration method used by the solver:

– 'implicit' (default): uses a Radau IIA implicit method of order 5. A sensible default
choice that will work for any problem

6 Chapter 1. Main package fronts

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

Fronts, Release 0.9.9

– 'explicit': uses the DOP853 explicit method of order 8. As an explicit method,
it trades off general solver robustness and accuracy for faster results in “well-behaved”
cases. With this method, the second derivative of 𝐷 is not needed. Requires SciPy 1.4.0
or later (Python 3 only)

• maxiter (int, optional) – Maximum number of iterations. A RuntimeError will be raised if
the specified tolerance is not achieved within this number of iterations. Must be nonnegative.

• verbose ({0, 1, 2}, optional) –

Level of algorithm’s verbosity. Must be one of the following:

– 0 (default): work silently

– 1: display a termination report

– 2: also display progress during iterations

See also:

solve()

Notes

This function works by transforming the partial differential equation with the Boltzmann transformation using
ode() and then solving the resulting ODE repeatedly with the chosen integration method as implemented
in the scipy.integrate module and a custom shooting algorithm. The boundary condition is satisfied
exactly as the starting point, and the algorithm iterates with different values of 𝜃 at the boundary until it finds the
solution that also verifies the initial condition within the specified tolerance. Trial values of 𝜃 at the boundary are
selected automatically by default (using heuristics, which can also take into account an optional hint if passed
by the user), or by bisecting an optional search interval. This scheme assumes that 𝜃 at the boundary varies
continuously with 𝜃𝑖.

1.1.3 fronts.solve_from_guess

fronts.solve_from_guess(D, i, b, o_guess, guess, radial=False, max_nodes=1000, verbose=0)
Alternative solver for problems with a Dirichlet boundary condition.

Given a positive function D, scalars 𝜃𝑖, 𝜃𝑏 and 𝑜𝑏, and coordinate unit vector r̂, finds a function 𝜃 of r and t such
that: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜕𝜃

𝜕𝑡
= ∇ ·

[︂
𝐷(𝜃))

𝜕𝜃

𝜕𝑟
r̂

]︂
𝑟 > 𝑟𝑏(𝑡), 𝑡 > 0

𝜃(𝑟, 0) = 𝜃𝑖 𝑟 > 0

𝜃(𝑟𝑏(𝑡), 𝑡) = 𝜃𝑏 𝑡 > 0

𝑟𝑏(𝑡) = 𝑜𝑏
√
𝑡

Alternative to the main solve() function. This function requires a starting mesh and guess of the solution.
It is significantly less robust than solve(), and will fail to converge in many cases that the latter can easily
handle (whether it converges will usually depend heavily on the problem, the starting mesh and the guess of the
solution; it will raise a RuntimeError on failure). However, when it converges it is usually faster than solve(),
which may be an advantage for some use cases. You should nonetheless prefer solve() unless you have a
particular use case for which you have found this function to be better.

Possible use cases include refining a solution (note that solve() can do that too), optimization runs in which
known solutions make good first approximations of solutions with similar parameters and every second of com-
puting time counts, and in the implementation of other solving algorithms. In all these cases, solve() should
probably be used as a fallback for when this function fails.

1.1. Solvers 7

https://docs.scipy.org/doc/scipy/reference/integrate.html#module-scipy.integrate

Fronts, Release 0.9.9

Parameters

• D (callable or sympy.Expression or str or float) – Callable that evaluates 𝐷 and its derivatives,
obtained from the fronts.D module or defined in the same manner—i.e.:

– D(theta) evaluates and returns 𝐷 at theta

– D(theta, 1) returns both the value of 𝐷 and its first derivative at theta

– D(theta, 2) returns the value of 𝐷, its first derivative, and its second derivative at
theta

where theta may be a single float or a NumPy array.

Alternatively, instead of a callable, the argument can be the expression of 𝐷 in the form
of a string or sympy.Expression with a single variable. In this case, the solver will
differentiate and evaluate the expression as necessary.

• i (float) – Initial condition, 𝜃𝑖.

• b (float) – Imposed boundary value, 𝜃𝑏.

• o_guess (numpy.array_like, shape (n_guess,)) – Starting mesh in terms of
the Boltzmann variable. Must be strictly increasing. o_guess[0] is taken as the value
of the parameter 𝑜𝑏, which determines the behavior of the boundary. If zero, it implies that
the boundary always exists at 𝑟 = 0. It must be strictly positive if radial is not False. A
non-zero value implies a moving boundary.

On the other end, o_guess[-1] must be large enough to contain the solution to the semi-
infinite problem.

• guess (float or numpy.array_like, shape (n_guess,)) – Starting guess
of the solution at the points in o_guess. If a single value, the guess is assumed uniform.

• radial ({False, 'cylindrical', 'polar', 'spherical'},
optional) – Choice of coordinate unit vector r̂. Must be one of the following:

– False (default): r̂ is any coordinate unit vector in rectangular (Cartesian) coordinates, or
an axial unit vector in a cylindrical coordinate system

– 'cylindrical' or 'polar': r̂ is the radial unit vector in a cylindrical or polar
coordinate system

– 'spherical': r̂ is the radial unit vector in a spherical coordinate system

Returns

solution – See Solution for a description of the solution object. Additional fields specific to
this solver are included in the object:

• o (numpy.ndarray, shape (n,)) – Final solver mesh, in terms of the Boltzmann variable.

• niter (int) – Number of iterations required to find the solution.

• rms_residuals (numpy.ndarray, shape (n-1,)) – RMS values of the relative residuals over
each mesh interval.

Return type Solution

Other Parameters

• max_nodes (int, optional) – Maximum allowed number of mesh nodes.

• verbose ({0, 1, 2}, optional) –

Level of algorithm’s verbosity. Must be one of the following:

8 Chapter 1. Main package fronts

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Fronts, Release 0.9.9

– 0 (default): work silently

– 1: display a termination report

– 2: also display progress during iterations

See also:

solve()

Notes

This function works by transforming the partial differential equation with the Boltzmann transformation using
ode() and then solving the resulting ODE with SciPy’s collocation-based boundary value problem solver
scipy.integrate.solve_bvp() and a two-point Dirichlet condition that matches the boundary and
initial conditions of the problem. Upon that solver’s convergence, it runs a final check on whether the candidate
solution also satisfies the semi-infinite condition (which implies 𝑑𝜃/𝑑𝑜 → 0 as 𝑜 → ∞).

1.1.4 fronts.inverse

fronts.inverse(o, samples)
Extract D from samples of a solution.

Given a function 𝜃 of r and t, and scalars 𝜃𝑖, 𝜃𝑏 and 𝑜𝑏, finds a positive function D of the values of 𝜃 such that:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜕𝜃

𝜕𝑡
=

𝜕

𝜕𝑟

(︂
𝐷(𝜃)

𝜕𝜃

𝜕𝑟

)︂
𝑟 > 𝑟𝑏(𝑡), 𝑡 > 0

𝜃(𝑟, 0) = 𝜃𝑖 𝑟 > 0

𝜃(𝑟𝑏(𝑡), 𝑡) = 𝜃𝑏 𝑡 > 0

𝑟𝑏(𝑡) = 𝑜𝑏
√
𝑡

𝜃 is taken as its values on a discrete set of points expressed in terms of the Boltzmann variable. Problems in
radial coordinates are not supported.

Parameters

• o (numpy.array_like, shape (n,)) – Points where 𝜃 is known, expressed in terms
of the Boltzmann variable. Must be strictly increasing.

• samples (numpy.array_like, shape (n,)) – Values of 𝜃 at o. Must be mono-
tonic (either non-increasing or non-decreasing) and samples[-1] must be the initial
value 𝜃𝑖.

Returns

D –

Function to evaluate 𝐷 and its derivatives:

• D(theta) evaluates and returns 𝐷 at theta

• D(theta, 1) returns both the value of 𝐷 and its first derivative at theta

• D(theta, 2) returns the value of 𝐷, its first derivative, and its second derivative at
theta

In all cases, the argument theta may be a single float or a NumPy array.

𝐷 is guaranteed to be continuous; however, its derivatives are not.

Return type callable

1.1. Solvers 9

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_bvp.html#scipy.integrate.solve_bvp

Fronts, Release 0.9.9

See also:

o()

Notes

An o function of 𝜃 is constructed by interpolating the input data with a PCHIP monotonic cubic spline. The re-
turned D uses the spline to evaluate the expressions that result from solving the Boltzmann-transformed equation
for 𝐷.

1.2 Solutions

Solution Solution to a problem.
BaseSolution Base class for solutions using the Boltzmann transfor-

mation.

1.2.1 fronts.Solution

class fronts.Solution(sol, ob, oi, D)
Solution to a problem.

Represents a continuously differentiable function 𝜃 of r and t such that:

𝜕𝜃

𝜕𝑡
= ∇ ·

[︂
𝐷(𝜃)

𝜕𝜃

𝜕𝑟
r̂

]︂
with r bounded at 𝑟𝑏(𝑡) = 𝑜𝑏

√
𝑡 on the left and unbounded to the right. For 𝑟 < 𝑟𝑏(𝑡), the methods will evaluate

to NaNs.

Parameters

• sol (callable) – Solution to an ODE obtained with ode. For any float or one-
dimensional NumPy array o with values in the closed interval [ob, oi], sol(o)[0] are
the values of 𝜃 at o, and sol(o)[1] are the values of the derivative 𝑑𝜃/𝑑𝑜 at o`. sol will
only be evaluated in this interval.

• ob (float) – Parameter 𝑜𝑏, which determines the behavior of the boundary in the problem.

• oi (float) – Value of the Boltzmann variable at which the solution can be considered to
be equal to the initial condition. Cannot be less than ob.

• D (callable) – Function to evaluate 𝐷 at arbitrary values of the solution. Must be callable
with a float or NumPy array as its argument.

__init__(sol, ob, oi, D)
Initialize self. See help(type(self)) for accurate signature.

10 Chapter 1. Main package fronts

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Fronts, Release 0.9.9

Methods

__init__(sol, ob, oi, D) Initialize self.
d_do([r, t, o]) Boltzmann-variable derivative of the solution.
d_dr(r, t) Spatial derivative of the solution.
d_drb(t) Spatial derivative of the solution at the boundary.
d_dt(r, t) Time derivative of the solution.
d_dtb(t) Time derivative of the solution at the boundary.
flux(r, t) Diffusive flux.
fluxb(t) Boundary flux.
rb(t) Boundary location.

Attributes

b Boundary value of the solution.
d_dob Derivative of the solution with respect to the Boltz-

mann variable at the boundary.
i Initial value of the solution.
ob Parameter 𝑜𝑏.

__call__(r=None, t=None, o=None)
Evaluate the solution.

Evaluates and returns 𝜃. May be called either with arguments r and t, or with just o.

Parameters

• r (None or float or numpy.ndarray, shape (n,), optional) – Lo-
cation(s). If this parameter is used, t must also be given.

• t (None or float or numpy.ndarray, optional) – Time(s). Values must
be positive.

• o (None or float or numpy.ndarray, shape (n,) optional) –
Value(s) of the Boltzmann variable. If this parameter is used, neither r nor t can be given.

Returns

Return type float or numpy.ndarray, shape (n,)

property b
Boundary value of the solution.

Type float

d_do(r=None, t=None, o=None)
Boltzmann-variable derivative of the solution.

Evaluates and returns 𝑑𝜃/𝑑𝑜, the derivative of 𝜃 with respect to the Boltzmann variable. May be called
either with arguments r and t, or with just o.

Parameters

• r (None or float or numpy.ndarray, shape (n,), optional) – Lo-
cation(s). If this parameter is used, t must also be given.

• t (None or float or numpy.ndarray, shape (n,), optional) –
Time(s). Values must be positive.

1.2. Solutions 11

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Fronts, Release 0.9.9

• o (None or float or numpy.ndarray, shape (n,), optional) –
Value(s) of the Boltzmann variable. If this parameter is used, neither r nor t can be given.

Returns

Return type float or numpy.ndarray, shape (n,)

property d_dob
Derivative of the solution with respect to the Boltzmann variable at the boundary.

Type float

d_dr(r, t)
Spatial derivative of the solution.

Evaluates and returns 𝜕𝜃/𝜕𝑟.

Parameters

• r (float or numpy.ndarray, shape (n,)) – Location(s) along the coordi-
nate.

• t (float or numpy.ndarray, shape (n,)) – Time(s). Values must be posi-
tive.

Returns

Return type float or numpy.ndarray, shape (n,)

d_drb(t)
Spatial derivative of the solution at the boundary.

Evaluates and returns 𝜕𝜃/𝜕𝑟|𝑏. Equivalent to self.d_dr(self.rb(t), t).

Parameters t (float or numpy.ndarray, shape (n,)) – Time(s). Values must be
positive.

Returns

Return type float or numpy.ndarray, shape (n,)

d_dt(r, t)
Time derivative of the solution.

Evaluates and returns 𝜕𝜃/𝜕𝑡.

Parameters

• r (float or numpy.ndarray, shape (n,)) – Location(s).

• t (float or numpy.ndarray, shape (n,)) – Time(s). Values must be posi-
tive.

Returns

Return type float or numpy.ndarray, shape (n,)

d_dtb(t)
Time derivative of the solution at the boundary.

Evaluates and returns 𝜕𝜃/𝜕𝑡|𝑏. Equivalent to self.d_dt(self.rb(t), t).

Parameters t (float or numpy.ndarray, shape (n,)) – Time(s). Values must be
positive.

Returns

Return type float or numpy.ndarray, shape (n,)

12 Chapter 1. Main package fronts

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Fronts, Release 0.9.9

flux(r, t)
Diffusive flux.

Returns the diffusive flux of 𝜃 in the direction r̂, equal to −𝐷(𝜃)𝜕𝜃/𝜕𝑟.

Parameters

• r (float or numpy.ndarray, shape (n,)) – Location(s).

• t (float or numpy.ndarray, shape (n,)) – Time(s). Values must be posi-
tive.

Returns

Return type float or numpy.ndarray, shape (n,)

fluxb(t)
Boundary flux.

Returns the diffusive flux of 𝜃 at the boundary, in the direction r̂. Equivalent to self.flux(self.
rb(t), t).

Parameters t (float or numpy.ndarray, shape (n,)) – Time(s). Values must be
positive.

Returns

Return type float or numpy.ndarray, shape (n,)

property i
Initial value of the solution.

Type float

property ob
Parameter 𝑜𝑏.

Type float

rb(t)
Boundary location.

Returns 𝑟𝑏, the location of the boundary.

Depending on 𝑜𝑏, the boundary may be fixed at 𝑟 = 0 or it may move with time.

Parameters t (float or numpy.ndarray) – Time(s). Values must not be negative.

Returns rb – The return is of the same type and shape as t.

Return type float or numpy.ndarray

1.2.2 fronts.BaseSolution

class fronts.BaseSolution(sol, D)
Base class for solutions using the Boltzmann transformation.

Represents a continuously differentiable function 𝜃 of r and t such that:

𝜕𝜃

𝜕𝑡
= ∇ ·

[︂
𝐷(𝜃)

𝜕𝜃

𝜕𝑟
r̂

]︂
Parameters

1.2. Solutions 13

https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Fronts, Release 0.9.9

• sol (callable) – Solution to an ODE obtained with ode. For any float or numpy.ndarray
o, sol(o)[0] are the values of 𝜃 at o, and sol(o)[1] are the values of the derivative
𝑑𝜃/𝑑𝑜 at o.

• D (callable) – Function to evaluate 𝐷 at arbitrary values of the solution. Must be callable
with a float or NumPy array as its argument.

See also:

ode

__init__(sol, D)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(sol, D) Initialize self.
d_do([r, t, o]) Boltzmann-variable derivative of the solution.
d_dr(r, t) Spatial derivative of the solution.
d_dt(r, t) Time derivative of the solution.
flux(r, t) Diffusive flux.

__call__(r=None, t=None, o=None)
Evaluate the solution.

Evaluates and returns 𝜃. May be called either with arguments r and t, or with just o.

Parameters

• r (None or float or numpy.ndarray, shape (n,), optional) – Lo-
cation(s). If this parameter is used, t must also be given.

• t (None or float or numpy.ndarray, optional) – Time(s). Values must
be positive.

• o (None or float or numpy.ndarray, shape (n,) optional) –
Value(s) of the Boltzmann variable. If this parameter is used, neither r nor t can be given.

Returns

Return type float or numpy.ndarray, shape (n,)

d_do(r=None, t=None, o=None)
Boltzmann-variable derivative of the solution.

Evaluates and returns 𝑑𝜃/𝑑𝑜, the derivative of 𝜃 with respect to the Boltzmann variable. May be called
either with arguments r and t, or with just o.

Parameters

• r (None or float or numpy.ndarray, shape (n,), optional) – Lo-
cation(s). If this parameter is used, t must also be given.

• t (None or float or numpy.ndarray, shape (n,), optional) –
Time(s). Values must be positive.

• o (None or float or numpy.ndarray, shape (n,), optional) –
Value(s) of the Boltzmann variable. If this parameter is used, neither r nor t can be given.

Returns

14 Chapter 1. Main package fronts

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Fronts, Release 0.9.9

Return type float or numpy.ndarray, shape (n,)

d_dr(r, t)
Spatial derivative of the solution.

Evaluates and returns 𝜕𝜃/𝜕𝑟.

Parameters

• r (float or numpy.ndarray, shape (n,)) – Location(s) along the coordi-
nate.

• t (float or numpy.ndarray, shape (n,)) – Time(s). Values must be posi-
tive.

Returns

Return type float or numpy.ndarray, shape (n,)

d_dt(r, t)
Time derivative of the solution.

Evaluates and returns 𝜕𝜃/𝜕𝑡.

Parameters

• r (float or numpy.ndarray, shape (n,)) – Location(s).

• t (float or numpy.ndarray, shape (n,)) – Time(s). Values must be posi-
tive.

Returns

Return type float or numpy.ndarray, shape (n,)

flux(r, t)
Diffusive flux.

Returns the diffusive flux of 𝜃 in the direction r̂, equal to −𝐷(𝜃)𝜕𝜃/𝜕𝑟.

Parameters

• r (float or numpy.ndarray, shape (n,)) – Location(s).

• t (float or numpy.ndarray, shape (n,)) – Time(s). Values must be posi-
tive.

Returns

Return type float or numpy.ndarray, shape (n,)

1.3 Boltzmann transformation

ode(D[, radial, catch_errors]) Transform the PDE into an ODE.
o(r, t) Transform to the Boltzmann variable.
do_dr(r, t) Spatial derivative of the Boltzmann transformation.
do_dt(r, t) Time derivative of the Boltzmann transformation.
r(o, t) Transform back from the Boltzmann variable into r.
t(o, r) Transform back from the Boltzmann variable into t.
as_o([r, t, o]) Transform to the Boltzmann variable if called with r and

t.

1.3. Boltzmann transformation 15

https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Fronts, Release 0.9.9

1.3.1 fronts.ode

fronts.ode(D, radial=False, catch_errors=False)
Transform the PDE into an ODE.

Given a positive function D and coordinate unit vector r̂, transforms the partial differential equation (PDE) in
which 𝜃 is the unknown function of 𝑟 and 𝑡:

𝜕𝜃

𝜕𝑡
= ∇ ·

[︂
𝐷(𝜃)

𝜕𝜃

𝜕𝑟
r̂

]︂
into an ordinary differential equation (ODE) where 𝜃 is an unknown function of the Boltzmann variable 𝑜.

This function returns the fun and jac callables that may be used to solve the ODE with the solvers included with
SciPy (scipy.integrate module). The second-order ODE is expressed as a system of first-order ODEs
with independent variable 𝑜 where y[0] in fun and jac correspond to the value of the function 𝜃 itself and
y[1] to its first derivative 𝑑𝜃/𝑑𝑜.

Parameters

• D (callable) – Callable as D(theta, 1), which must return both 𝐷 and its first
derivative evaluated at theta. If the returned jac will be used, it must also be callable
as D(theta, 2) to obtain 𝐷, its first derivative, and its second derivative evaluated at
theta. To allow vectorized usage of fun and jac, D must be able to accept a NumPy array
as theta.

• radial ({False, 'cylindrical', 'polar', 'spherical'},
optional) – Choice of coordinate unit vector r̂. Must be one of the following:

– False (default): r̂ is any coordinate unit vector in rectangular (Cartesian) coordinates, or
an axial unit vector in a cylindrical coordinate system

– 'cylindrical' or 'polar': r̂ is the radial unit vector in a cylindrical or polar
coordinate system

– 'spherical': r̂ is the radial unit vector in a spherical coordinate system

Returns

• fun (callable) – Function that returns the right-hand side of the system. The calling signature
is fun(o, y). In non-vectorized usage, o is a float and y is any sequence of two floats,
and fun returns a NumPy array with shape (2,). For vectorized usage, o and y must be
NumPy arrays with shapes (n,) and (2,n) respectively, and the return is a NumPy array of
shape (2,n).

• jac (callable) – Function that returns the Jacobian matrix of the right-hand side of the sys-
tem. The calling signature is jac(o, y). In non-vectorized usage, o is a scalar and y is
an array-like with shape (2,n), and the return is a NumPy array with shape (2,2). In vector-
ized usage, o and y must be NumPy arrays with shapes (n,) and (2,n) respectively, and the
return is a NumPy array of shape (2,2,n).

Other Parameters catch_errors (bool, optional) – Whether to catch exceptions that may be at-
tributed to a domain error of D and convert them to NaN (or +/-Inf) values in the returns of fun
and jac. If True, the following exceptions will be caught as domain errors:

• ValueError and ArithmeticError (the latter includes ZeroDivisionError) raised by a call to
D

• ZeroDivisionError when attempting to divide by a zero value returned by D

• TypeError when assigning to the return array (usually because Python arithmetic inside D
caused that function to return a complex value)

16 Chapter 1. Main package fronts

https://docs.scipy.org/doc/scipy/reference/integrate.html#module-scipy.integrate

Fronts, Release 0.9.9

Returning NaN or infinite values signals the domain error to a caller that does not expect fun and
jac to raise exceptions to indicate this condition (such as SciPy).

This option is useful in non-vectorized usage, and particularly where the invocation of D might
use native Python mathematical functions and types. It is less relevant in vectorized usage and
other cases that involve only NumPy types and functions, as those will not cause these exceptions
by default.

If False (default), the exceptions will be allowed to propagate to the callers of fun and jac.

See also:

BaseSolution(), o()

Notes

If radial is other than False, the PDE is undefined at 𝑟 = 0, and therefore the returned ODE is also undefined
for 𝑜 = 0.

1.3.2 fronts.o

fronts.o(r, t)
Transform to the Boltzmann variable.

Returns the Boltzmann variable at the given r and t, which is the result of applying the Boltzmann transforma-
tion:

𝑜(𝑟, 𝑡) = 𝑟/
√
𝑡

Parameters

• r (float or numpy.ndarray) – Location(s). If an array, it must have a shape broad-
castable with t.

• t (float or numpy.ndarray) – Time(s). If an array, it must have a shape broad-
castable with r. Values must be positive.

Returns o – The return is a float if both r and t are floats. Otherwise it is an array of the shape that
results from broadcasting r and t.

Return type float or numpy.ndarray

See also:

do_dr(), do_dt(), r(), t(), as_o()

1.3.3 fronts.do_dr

fronts.do_dr(r, t)
Spatial derivative of the Boltzmann transformation.

Returns the partial derivative 𝜕𝑜/𝜕𝑟 evaluated at (r, t).

Parameters

• r (float or numpy.ndarray) – Location(s). If an array, it must have a shape broad-
castable with t.

1.3. Boltzmann transformation 17

https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Fronts, Release 0.9.9

• t (float or numpy.ndarray) – Time(s). If an array, it must have a shape broad-
castable with r. Values must be positive.

Returns do_dr – The return is a float if both r and t are floats. Otherwise it is an array of the shape
that results from broadcasting r and t.

Return type float or numpy.ndarray

See also:

o(), do_dt()

1.3.4 fronts.do_dt

fronts.do_dt(r, t)
Time derivative of the Boltzmann transformation.

Returns the partial derivative 𝜕𝑜/𝜕𝑡 evaluated at (r, t).

Parameters

• r (float or numpy.ndarray) – Location(s). If an array, it must have a shape broad-
castable with t.

• t (float or numpy.ndarray) – Time(s). If an array, it must have a shape broad-
castable with r. Values must be positive.

Returns do_dt – The return is a float if both r and t are floats. Otherwise it is an array of the shape
that results from broadcasting r and t.

Return type float or numpy.ndarray

See also:

o(), do_dr()

1.3.5 fronts.r

fronts.r(o, t)
Transform back from the Boltzmann variable into r.

Parameters

• o (float or numpy.ndarray) – Value(s) of the Boltzmann variable. If an array, it
must have a shape broadcastable with t.

• t (float or numpy.ndarray) – Time(s). If an array, it must have a shape broad-
castable with o. Values must not be negative.

Returns r – The return is a float if both o and t are floats. Otherwise it is an array of the shape that
results from broadcasting o and t.

Return type float or numpy.ndarray

See also:

o(), t()

18 Chapter 1. Main package fronts

https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Fronts, Release 0.9.9

1.3.6 fronts.t

fronts.t(o, r)
Transform back from the Boltzmann variable into t.

Parameters

• o (float or numpy.ndarray) – Value(s) of the Boltzmann variable. If a NumPy
array, it must have a shape broadcastable with r. Values must not be zero.

• r (float or numpy.ndarray) – Location(s). If a NumPy array, it must have a shape
broadcastable with o.

Returns t – The return is a float if both o and r are floats. Otherwise it is an array of the shape that
results from broadcasting o and r.

Return type float or numpy.ndarray

See also:

o(), r()

1.3.7 fronts.as_o

fronts.as_o(r=None, t=None, o=None)
Transform to the Boltzmann variable if called with r and t. Passes the values through if called with o only. On
other combinations of arguments, it raises a TypeError with a message explaining valid usage.

This function is a helper to define other functions that may be called either with r and t, or with just o.

Parameters

• r (None or float or numpy.ndarray, optional) – Location(s). If this pa-
rameter is used, t must also be given. If an array, it must have a shape broadcastable with
t.

• t (None or float or numpy.ndarray, optional) – Time(s). If an array, it
must have a shape broadcastable with r. Values must be positive.

• o (None or float or numpy.ndarray, optional) – Value(s) of the Boltz-
mann variable. If this parameter is used, neither r nor t can be given.

Returns o – Passes o through if it is given. Otherwise, it calls the function o() and returns o(r,t).

Return type float or numpy.ndarray

See also:

o()

1.3. Boltzmann transformation 19

https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Fronts, Release 0.9.9

20 Chapter 1. Main package fronts

CHAPTER

TWO

MODULE FRONTS.D: DIFFUSIVITY FUNCTIONS

D.constant(D0) Return a constant D function.
D.power_law(k[, a, epsilon]) Return a power-law D function.
D.brooks_and_corey(n[, l, alpha, Ks, k, nu, . . .]) Return a Brooks and Corey moisture diffusivity func-

tion.
D.van_genuchten([n, m, l, alpha, Ks, k, nu, . . .]) Return a Van Genuchten moisture diffusivity function.
D.from_expr(expr[, vectorized, max_derivatives]) Create a D function from a SymPy-compatible expres-

sion.
D.richards(C, kr[, Ks, k, nu, g]) Return a moisture diffusivity function for a Richards

equation problem.

2.1 fronts.D.constant

fronts.D.constant(D0)
Return a constant D function.

Given 𝐷0, returns the function D:

𝐷(𝜃) = 𝐷0

Parameters D0 (float) – 𝐷0, a positive constant

Returns

D –

Function to evaluate 𝐷 and its derivatives:

• D(theta) evaluates and returns 𝐷 at theta

• D(theta, 1) returns both the value of 𝐷 and its first derivative at theta

• D(theta, 2) returns the value of 𝐷, its first derivative, and its second derivative at
theta

In all cases, the argument theta may be a single float or a NumPy array.

Return type callable

21

https://docs.python.org/3/library/functions.html#float

Fronts, Release 0.9.9

Notes

This function is not particularly useful: a constant D will turn a diffusion problem into a linear one, which has an
exact solution and no numerical solvers are necessary. However, it is provided here given that it is the simplest
supported function.

2.2 fronts.D.power_law

fronts.D.power_law(k, a=1.0, epsilon=0.0)
Return a power-law D function.

Given the scalars a, k and 𝜀, returns a function D defined as:

𝐷(𝜃) = 𝑎𝜃𝑘 + 𝜀

Parameters

• k (float) – Exponent

• a (float, optional) – Constant factor. The default is 1.

• epsilon (float, optional) – 𝜀, the deviation term. The default is 0.

Returns

D –

Function to evaluate 𝐷 and its derivatives:

• D(theta) evaluates and returns 𝐷 at theta

• D(theta, 1) returns both the value of 𝐷 and its first derivative at theta

• D(theta, 2) returns the value of 𝐷, its first derivative, and its second derivative at
theta

In all cases, the argument theta may be a single float or a NumPy array.

Return type callable

Notes

Keep in mind that, depending on the parameters, the returned D does not necessarily map every value of 𝜃 to a
positive value.

2.3 fronts.D.brooks_and_corey

fronts.D.brooks_and_corey(n, l=1.0, alpha=1.0, Ks=None, k=None, nu=1e-06, g=9.81,
theta_range=0.0, 1.0)

Return a Brooks and Corey moisture diffusivity function.

Given the saturated hydraulic conductivity 𝐾𝑆 and parameters 𝛼, n, l, 𝜃𝑟 and 𝜃𝑠, the Brooks and Corey moisture
diffusivity function D is defined as:

𝐷(𝜃) =
𝐾𝑆𝑆

1/𝑛+𝑙+1
𝑒

𝛼𝑛(𝜃𝑠 − 𝜃𝑟)

22 Chapter 2. Module fronts.D: Diffusivity functions

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Fronts, Release 0.9.9

where:

𝑆𝑒 =
𝜃 − 𝜃𝑟
𝜃𝑠 − 𝜃𝑟

and 𝜃 is water content.

Parameters

• n (float) – n parameter.

• l (float, optional) – l parameter. The default is 1.

• alpha (float, optional) – 𝛼 parameter. The default is 1. Must be positive.

• Ks (None or float, optional) – 𝐾𝑆 , the saturated hydraulic conductivity. Must
be positive. If neither Ks nor k are given, the saturated hydraulic conductivity is assumed to
be 1.

• k (None or float, optional) – Intrinsic permeability of the porous medium. Can
be given in place of Ks, which results in the saturated hydraulic conductivity being computed
using 𝐾𝑆 = 𝑘𝑔/𝜈. Must be positive.

• nu (float, optional) – 𝜈, the kinematic viscosity of the wetting fluid. Only used if
k is passed instead of Ks. Must be positive. Defaults to 1e-6, approximately the kinematic
viscosity of water at 20°C in SI units.

• g (float, optional) – Magnitude of the gravitational acceleration. Only used if k is
passed instead of Ks. Must be positive. Defaults to 9.81, the gravity of Earth in SI units.

• theta_range (sequence of two floats, optional) – (𝜃𝑟, 𝜃𝑠), where 𝜃𝑟 is
the minimum (also known as residual) water content and 𝜃𝑠 is the maximum water content.
The default is (0, 1). 𝜃𝑠 must be greater than 𝜃𝑟.

Returns

D –

Function to evaluate 𝐷 and its derivatives:

• D(theta) evaluates and returns 𝐷 at theta

• D(theta, 1) returns both the value of 𝐷 and its first derivative at theta

• D(theta, 2) returns the value of 𝐷, its first derivative, and its second derivative at
theta

In all cases, the argument theta may be a single float or a NumPy array.

Return type callable

References

[1] BROOKS, R.; COREY, T. Hydraulic properties of porous media. Hydrology Papers, Colorado State Univer-
sity, 1964, vol. 24, p. 37.

2.3. fronts.D.brooks_and_corey 23

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Fronts, Release 0.9.9

2.4 fronts.D.van_genuchten

fronts.D.van_genuchten(n=None, m=None, l=0.5, alpha=1.0, Ks=None, k=None, nu=1e-06, g=9.81,
theta_range=0.0, 1.0)

Return a Van Genuchten moisture diffusivity function.

Given the saturated hydraulic conductivity 𝐾𝑆 and parameters 𝛼, m, l, 𝜃𝑟 and 𝜃𝑠, the Van Genuchten moisture
diffusivity function D is defined as:

𝐷(𝜃) =
(1−𝑚)𝐾𝑆

𝛼𝑚(𝜃𝑠 − 𝜃𝑟)
𝑆
𝑙− 1

𝑚
𝑒

(︁
(1− 𝑆

1
𝑚
𝑒)−𝑚 + (1− 𝑆

1
𝑚
𝑒)𝑚 − 2

)︁
where:

𝑆𝑒 =
𝜃 − 𝜃𝑟
𝜃𝑠 − 𝜃𝑟

and 𝜃 is water content.

In common usage, the m parameter is replaced with an n parameter so that 𝑚 = 1−1/𝑛. This function supports
either parameter.

Parameters

• n (float, optional) – n parameter in the Van Genuchten model. Must be >1. Either
n or m must be given (but not both).

• m (float, optional) – m parameter in the Van Genuchten model. Must be strictly
between 0 and 1. Either n or m must be given (but not both).

• l (float, optional) – Pore connectivity parameter. The default is 0.5.

• alpha (float, optional) – 𝛼 parameter of the Van Genuchten model. The default is
1. Must be positive.

• Ks (None or float, optional) – 𝐾𝑆 , the saturated hydraulic conductivity. Must
be positive. If neither Ks nor k are given, the saturated hydraulic conductivity is assumed to
be 1.

• k (None or float, optional) – Intrinsic permeability of the porous medium. Can
be given in place of Ks, which results in the saturated hydraulic conductivity being computed
using 𝐾𝑆 = 𝑘𝑔/𝜈. Must be positive.

• nu (float, optional) – 𝜈, the kinematic viscosity of the wetting fluid. Only used if
k is passed instead of Ks. Must be positive. Defaults to 1e-6, approximately the kinematic
viscosity of water at 20°C in SI units.

• g (float, optional) – Magnitude of the gravitational acceleration. Only used if k is
passed instead of Ks. Must be positive. Defaults to 9.81, the gravity of Earth in SI units.

• theta_range (sequence of two floats, optional) – (𝜃𝑟, 𝜃𝑠), where 𝜃𝑟 is
the minimum (also known as residual) water content and 𝜃𝑠 is the maximum water content.
The default is (0, 1). 𝜃𝑠 must be greater than 𝜃𝑟.

Returns

D –

Function to evaluate 𝐷 and its derivatives:

• D(theta) evaluates and returns 𝐷 at theta

• D(theta, 1) returns both the value of 𝐷 and its first derivative at theta

24 Chapter 2. Module fronts.D: Diffusivity functions

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Fronts, Release 0.9.9

• D(theta, 2) returns the value of 𝐷, its first derivative, and its second derivative at
theta

In all cases, the argument theta may be a single float or a NumPy array.

Return type callable

Notes

The expression used is the one found in Van Genuchten’s original paper [1], but with the addition of the optional
l parameter.

References

[1] VAN GENUCHTEN, M. Th. A closed-form equation for predicting the hydraulic conductivity of unsaturated
soils. Soil Science Society of America Journal, 1980, vol. 44, no 5, p. 892-898.

2.5 fronts.D.from_expr

fronts.D.from_expr(expr, vectorized=True, max_derivatives=2)
Create a D function from a SymPy-compatible expression.

Parameters

• expr (sympy.Expression or str or float) – SymPy-compatible expression containing up to
one free symbol.

• vectorized (bool, optional) – Whether the returned D must be compatible with a
solver that uses vectorized calls.

If True (default), the first argument passed to D may always be either a float or a NumPy
array. However, if False, calls as D(theta, 1) or D(theta, 2) will assume that
theta is a single float, which may allow for optimizations that speed up the evaluations
required by a solver that does not use vectorized calls.

Note that, regardless of this setting, calls to D that do not ask for any derivatives (i.e., calls
as D(theta)) will always take floats and arrays interchangeably. This behavior ensures
that D is always compatible with the solution classes.

• max_derivatives (int, optional) – Highest-order derivative of D that may be
required. Can be 0, 1 or 2. The default is 2.

Returns

D –

Function to evaluate 𝐷 and its derivatives:

• D(theta) evaluates and returns 𝐷 at theta

• If max_derivatives >= 1, D(theta, 1) returns both the value of 𝐷 and its first derivative
at theta

• If max_derivatives is 2, D(theta, 2) returns the value of 𝐷, its first derivative, and its
second derivative at theta

2.5. fronts.D.from_expr 25

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

Fronts, Release 0.9.9

If vectorized is True, the argument theta may be a single float or a NumPy array in all cases.
If vectorized is False, theta may be either a float or an array when D is called as D(theta),
but it must be a float otherwise.

Return type callable

Notes

Users will rarely need to call this function, as all built-in solver functions already do so themselves when they
receive an expression as D.

2.6 fronts.D.richards

fronts.D.richards(C, kr, Ks=None, k=None, nu=1e-06, g=9.81)
Return a moisture diffusivity function for a Richards equation problem.

Given K_S and the functions C and 𝑘𝑟 (whose argument is either water content or saturation), returns the
function:

𝐷(𝜃) =
𝐾𝑆𝑘𝑟(𝜃)

𝐶(𝜃)

This function helps transform problems of the horizontal Richards equation (for which 𝐾𝑆 , 𝑘𝑟, and C are known
parameters) into problems of the moisture diffusivity equation that can be solved with this library.

Parameters

• C (callable) – Capillary capacity function (also known as hydraulic capacity function).
A twice-differentiable function that maps values of 𝜃 to positive values. It can be called as
C(theta) to evaluate it at theta. It can also be called as C(theta, n)with n equal to
1 or 2, in which case the first n derivatives of the function evaluated at the same theta are
included (in order) as additional return values. While mathematically a scalar function, C
operates in a vectorized fashion with the same semantics when theta is a numpy.ndarray.

• kr (callable) – 𝑘𝑟, the relative permeability function (also known as relative conduc-
tivity function). A twice-differentiable function that maps values of 𝜃 to positive values
(usually between 0 and 1). It can be called as kr(theta) to evaluate it at theta. It can
also be called as kr(theta, n) with n equal to 1 or 2, in which case the first n deriva-
tives of the function evaluated at the same theta are included (in order) as additional return
values. While mathematically a scalar function, kr operates in a vectorized fashion with the
same semantics when theta is a numpy.ndarray.

• Ks (None or float, optional) – 𝐾𝑆 , the saturated hydraulic conductivity. Must
be positive. If neither Ks nor k are given, the saturated hydraulic conductivity is assumed to
be 1.

• k (None or float, optional) – Intrinsic permeability of the porous medium. Can
be given in place of Ks, which results in the saturated hydraulic conductivity being computed
using 𝐾𝑆 = 𝑘𝑔/𝜈. Must be positive.

• nu (float, optional) – 𝜈, the kinematic viscosity of the wetting fluid. Only used if
k is passed instead of Ks. Must be positive. Defaults to 1e-6, approximately the kinematic
viscosity of water at 20°C in SI units.

• g (float, optional) – Magnitude of the gravitational acceleration. Only used if k is
passed instead of Ks. Must be positive. Defaults to 9.81, the gravity of Earth in SI units.

26 Chapter 2. Module fronts.D: Diffusivity functions

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Fronts, Release 0.9.9

Returns

D –

Function to evaluate 𝐷 and its derivatives:

• D(theta) evaluates and returns 𝐷 at theta

• D(theta, 1) returns both the value of 𝐷 and its first derivative at theta

• D(theta, 2) returns the value of 𝐷, its first derivative, and its second derivative at
theta

In all cases, the argument theta may be a single float or a NumPy array.

Return type callable

• genindex

• search

2.6. fronts.D.richards 27

Fronts, Release 0.9.9

28 Chapter 2. Module fronts.D: Diffusivity functions

INDEX

Symbols
__call__() (fronts.BaseSolution method), 14
__call__() (fronts.Solution method), 11
__init__() (fronts.BaseSolution method), 14
__init__() (fronts.Solution method), 10

A
as_o() (in module fronts), 19

B
b() (fronts.Solution property), 11
BaseSolution (class in fronts), 13
brooks_and_corey() (in module fronts.D), 22

C
constant() (in module fronts.D), 21

D
d_do() (fronts.BaseSolution method), 14
d_do() (fronts.Solution method), 11
d_dob() (fronts.Solution property), 12
d_dr() (fronts.BaseSolution method), 15
d_dr() (fronts.Solution method), 12
d_drb() (fronts.Solution method), 12
d_dt() (fronts.BaseSolution method), 15
d_dt() (fronts.Solution method), 12
d_dtb() (fronts.Solution method), 12
do_dr() (in module fronts), 17
do_dt() (in module fronts), 18

F
flux() (fronts.BaseSolution method), 15
flux() (fronts.Solution method), 12
fluxb() (fronts.Solution method), 13
from_expr() (in module fronts.D), 25

I
i() (fronts.Solution property), 13
inverse() (in module fronts), 9

O
o() (in module fronts), 17

ob() (fronts.Solution property), 13
ode() (in module fronts), 16

P
power_law() (in module fronts.D), 22

R
r() (in module fronts), 18
rb() (fronts.Solution method), 13
richards() (in module fronts.D), 26

S
Solution (class in fronts), 10
solve() (in module fronts), 3
solve_flowrate() (in module fronts), 5
solve_from_guess() (in module fronts), 7

T
t() (in module fronts), 19

V
van_genuchten() (in module fronts.D), 24

29

	Main package fronts
	Solvers
	Solutions
	Boltzmann transformation

	Module fronts.D: Diffusivity functions
	fronts.D.constant
	fronts.D.power_law
	fronts.D.brooks_and_corey
	fronts.D.van_genuchten
	fronts.D.from_expr
	fronts.D.richards

	Index

