fronts.D.letd
- fronts.D.letd(L, E, T, Dwt=1.0, theta_range=(0.0, 1.0))
Return a LETd diffusivity function.
The LETd diffusivity function \(D\) is defined as:
\[D(\theta) = D_{wt} \frac{S_{wp}^L}{S_{wp}^L + E (1 - S_{wp})^T}\]with:
\[S_{wp} = \frac{\theta - \theta_r}{\theta_s - \theta_r}\]- Parameters:
L (float) – \(L\) parameter for the LETd correlation.
E (float) – \(E\) parameter for the LETd correlation.
T (float) – \(T\) parameter for the LETd correlation.
Dwt (float, optional) – Constant diffusivity factor. The default is 1.
theta_range (sequence of two floats, optional) – (\(\theta_r\), \(\theta_s\)), where \(\theta_r\) is the minimum (also known as residual) water content and \(\theta_s\) is the maximum water content. The default is (0, 1). \(\theta_s\) must be greater than \(\theta_r\).
- Returns:
D –
Function to evaluate \(D\) and its derivatives:
D(theta)
evaluates and returns \(D\) attheta
D(theta, 1)
returns both the value of \(D\) and its first derivative attheta
D(theta, 2)
returns the value of \(D\), its first derivative, and its second derivative attheta
In all cases, the argument
theta
may be a single float or a NumPy array.- Return type:
callable
References
[1] GERLERO, G. S.; VALDEZ, A.; URTEAGA, R; KLER, P. A. Validity of capillary imbibition models in paper-based microfluidic applications. Transport in Porous Media, 2022, vol. 141, no. 7, pp. 1-20.